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A B S T R A C T

Spatially and temporally consistent vegetation structure time-series have great potential to improve the capacity
for national land cover monitoring, to reduce latency and cost of international reporting, and to harmonize
regional land cover characterizations. Here we present a semi-automatic, operational algorithm for mapping and
monitoring of woody vegetation canopy cover and height at a regional scale using freely available Landsat time-
series data. The presented algorithm employs automatic data processing and mapping using a set of lidar-based
vegetation structure prediction models. Changes in vegetation cover are detected separately and integrated into
the structure time-series. Sample-based validation and inter-comparison with existing datasets demonstrates the
spatial and temporal consistency of our regional data time-series. The dataset reliably reflects changes in tree
cover (tree cover loss user's accuracy of 0.84 and producer's accuracy of 0.75) and can serve as a tool to map
annual forest extent (user's accuracy of 0.98 and producer's accuracy of 0.81 for 10% canopy cover threshold to
define the forest class). The tree height estimates are consistent with a GLAS-based global map (mean average
error of 3.7 m, the correlation coefficient of 0.92 and the R2 of 0.85). The algorithm was prototyped within the
Lower Mekong region where it revealed an intensive woody vegetation dynamic. Of the year 2000 forest area
(defined using canopy cover threshold of 10% and tree height threshold of 5m), 9.4% was deforested by the year
2017, and 16.6% was affected by stand-replacement disturbance followed by reforestation. The average annual
area of stand-level forest disturbance within the region was 2.34 Mha, and increased by 34% from 2001 (1.85
Mha) to 2017 (2.48 Mha). Total forest area decreased by 6.2% within the region, and 11.1% of year 2000
primary forest area was lost by 2017. At the national level, Cambodia demonstrated the highest rate of defor-
estation, with a net forest area loss of 22.5%. We estimated that 21.3% of 2017 forest cover had an age of
17 years or less, illustrating the intensive forest land uses within the region. The time-series product is suitable
for mapping annual land cover and inter-annual land cover change using customized class definitions. The
regionally-consistent data are publicly available for download (https://glad.umd.edu/), and online analysis
(https://rlcms-servir.adpc.net/en/forest-monitor/), and serve as an input to the SERVIR-Mekong Regional Land
Cover Monitoring System.

1. Introduction

Approaches and algorithms for satellite data processing and time-
series characterization have been developed since the mid-1980s
through advancing computing capabilities and data analysis tools

(Justice et al., 1985; Colwell, 1993; Brown et al., 1993). Due to com-
putation and data access constraints, these methods were first applied
at low spatial resolution using data from meteorological satellites
(DeFries and Townshend, 1994; Loveland and Belward, 1997; DeFries
et al., 1998). In the early 2000s, the development of satellite earth
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observation technologies, digital data processing algorithms, and data
distribution policies enabled the operational monitoring of global land
cover at locally relevant spatial resolutions. The progress in using free-
of-charge, consistently processed Moderate Resolution Imaging Spec-
troradiometer (MODIS) data (Friedl et al., 2002; Hansen et al., 2003,
2010) that enabled land cover mapping at 250m spatial resolution was
expanded to the Landsat data archive upon its opening for public access
in 2008 (Woodcock et al., 2008). Landsat data, while lacking the high
frequency of observations compared to MODIS, provided a medium
(30m) spatial resolution suitable for most land cover monitoring ap-
plications. Given its four-decade long history, many large-scale land
cover change studies were made possible (Wulder et al., 2012).

Landsat data were found especially useful for forest monitoring due
to its spatial resolution, spectral bandwidths, and observation fre-
quency. Periodic monitoring of such key environmental parameters as
tree canopy cover, composition, and disturbance are feasible with
Landsat data (Iverson et al., 1989; Westman et al., 1989; Cohen and
Goward, 2004). Early approaches based on discrete land cover classi-
fication and bi-temporal change detection (Tucker et al., 1984; Skole
and Tucker, 1993) evolved toward modeling of continuous vegetation
structure (DeFries et al., 1998; Hansen et al., 2002a, 2002b, Cohen
et al., 2003) and function (Running et al., 2004). Change detection
advanced through the use of dense time-series analyses (Huang et al.,
2010; Kennedy et al., 2010; Verbesselt et al., 2010; Hansen et al., 2013)
and integration of directly detected changes with annual land cover
information (Potapov et al., 2015; Wulder et al., 2018). Non-parametric
machine learning algorithms allowed extrapolating continuous forest
composition and structure parameters by relating field observations to
Landsat spectral reflectance data (Reese et al., 2003; Tomppo et al.,
2008). Lidar-based forest structure data offer the possibility of in-
tegration with Landsat data through the use of lidar-derived canopy and
height information for model calibration (Hudak et al., 2002; Wulder
et al., 2007; Hansen et al., 2016; Matasci et al., 2018). We consider the
airborne lidar data preferable for model calibration due to the incon-
sistencies in tree height estimation and the coarse spatial resolution of
the Geoscience Laser Altimeter System (GLAS) data (Hansen et al.,
2016). However, publicly available airborne data are scarce and may
not be readily available for a particular region of interest.

Time-series of continuous vegetation structure (like tree canopy
cover and height) may be used to detect changes that persist in time
(Huang et al., 2010; Matasci et al., 2018). However, such an approach
may not be suitable for tropical regions where clear-sky observation
frequency is low, land cover change rapid, and tree canopy recovery
fast following disturbance. Mapping tree cover structure and composi-
tion requires land surface phenology information collected over a
growing season (or the entire year in the tropics, Hansen et al., 2016)
while disturbance detection relies on reflectance change over shorter
time intervals. Souza et al. (2005) showed that a single observation is
often the only information available to detect ephemeral disturbance in
tropical environments. To date, prototype tree cover structure models
(Simard et al., 2011; Matasci et al., 2018) have relied on static topo-
graphy and location metrics in addition to spectral variables, which
may limit the ability to detect frequent changes in tree canopy cover.

Timely forest monitoring is a required precondition to the successful
implementation of national policies and international agreements to-
ward the ultimate goal of balancing economic development and en-
vironmental sustainability. As part of the United Nations Framework
Convention on Climate Change (UNFCCC) and Reducing Emissions
from Deforestation and forest Degradation (REDD+) program, coun-
tries are required to provide periodic reports on the state of their forests
and carbon emissions related to forest conversion. Publicly available
satellite data, specifically Landsat, benefit national forest monitoring
systems, especially in developing countries where field-based forest
assessments are often not fully operational and funds for commercial
remotely sensed data purchase limited. All Lower Mekong countries,
including Cambodia, Laos, Myanmar, Thailand, and Vietnam, use

remotely sensed data to support National Forest Resource Assessments
(FRA) (FAO, 2016) and REDD+ Forest Reference Emission Levels
(FREL) reporting (MARD, 2016; MOE, 2017; MONREC, 2018; DOF,
2018).

The capacity of national monitoring agencies to process and analyze
remotely sensed data is gradually improving, in part through support by
programs such as SilvaCarbon (an interagency technical cooperation
program of the U.S. Government) and SERVIR (a partnership project
between NASA and the U.S. Agency for International Development).
However, a number of constraints persist including limitations in data
processing and analysis capacity, low data transparency and method
replicability, and inconsistency of national map products between
countries and time intervals. Post-classification comparison is fre-
quently used for forest monitoring within Lower Mekong countries
(MARD, 2016; MOE, 2017; MONREC, 2018). Such an approach is dif-
ficult especially if maps are made using different source data and, in
some cases, produced by different expert teams using different methods
and definitions. Manual digitizing (Vietnam) and manual attribution of
image segments (Laos, Cambodia) are more frequently applied than
automatic classification tools. In most cases, forest area and change are
directly estimated from maps without implementing a statistical sam-
pling approach as recommended by the “good practice” guidance for
land cover and land cover change area reporting (GFOI, 2016; IPCC,
2006; Olofsson et al., 2014). Availability of regional spatially and
temporally consistent data products, specifically forest extent, struc-
ture, and change, may be beneficial in such circumstances. The global
tree canopy cover extent and change data (Hansen et al., 2013) dis-
tributed by Global Forest Watch (GFW, https://www.
globalforestwatch.org/), an initiative of the World Resources In-
stitute, are employed by many developing countries to support national
forest change reporting. Regional time-series of continuous vegetation
structure maps provide an alternative solution for national land cover
mapping. Unlike discrete classification and change detection maps,
such products may be integrated to create a national forest map using a
specific set of forest class definitions. The Regional Land Cover Mon-
itoring System (RLCMS) being developed by SERVIR-Mekong (2015) is
using this approach to deliver spatially and temporally consistent time-
series data for national land cover mapping and monitoring applica-
tions. The use of regionally consistent woody vegetation composition
and structure time-series supports national forest monitoring programs
and promotes regional consistency of reports while preserving national
ownership of the derived maps and estimates.

The presented research has two primary objectives. The first ob-
jective is to develop a methodology for a comprehensive regional
woody vegetation structure monitoring system that provides exhaustive
data for national applications. Data users (including governmental,
environmental, and academic organizations) are able to apply specific
thresholds and definitions and to derive specific policy-related forest
extent and type maps without the need to perform costly and compli-
cated re-analysis of remotely sensed imagery. Our methodology is based
on the automated Landsat data processing (Hansen et al., 2008;
Potapov et al., 2012) and continuous tree canopy cover (Hansen et al.,
2003) and height (Hansen et al., 2016) mapping methods. The meth-
odology was prototyped in the Lower Mekong region for the 2000–2017
time interval, and the output products were validated using available
reference data. Our second objective is to supply annual vegetation
structure data to the SERVIR-Mekong RLCMS. The regionally-consistent
dataset is publicly available for download (https://glad.umd.edu/) and
online analysis (https://rlcms-servir.adpc.net/en/forest-monitor/). The
SERVIR-Mekong and GFW teams are committed to its operational an-
nual updates. The presented data have a potential to reduce effort and
latency for national annual forest monitoring and to improve the
quality and regional consistency of forest area and change reporting.
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2. Data and methods

The study area, hereafter referred to as the Lower Mekong region,
includes five countries: Cambodia, Laos, Myanmar, Thailand, and
Vietnam. The analysis was done within country boundaries from the
Database of Global Administrative Areas (GADM, www.gadm.org) and
a 5-km buffer along the coastline to account for small islands that may
be missing in the GADM data.

The Landsat Analysis Ready Data (ARD) produced by the Global
Land Analysis and Discovery (GLAD) automated image processing
system served as a data source for annual vegetation structure mapping.
The essence of the GLAD ARD approach is to convert individual Landsat
images into a time-series of 16-day normalized surface reflectance
composites with minimal atmospheric contamination. The Landsat data
processing algorithms were prototyped by Hansen et al. (2008) and
Potapov et al. (2012). Since the development of the 2000–2012 forest
loss product (Hansen et al., 2013), we improved the GLAD Landsat
processing algorithm by re-calibrating quality assessment models, im-
proving the reflectance normalization algorithm, and introducing a 16-
day compositing method (consistent with MODIS Level 3 products,
Huete et al., 1999) to store processed ARD. The Landsat ARD time-
series data are subsequently used to generate different sets of multi-
temporal metrics that serve as inputs to regional woody vegetation
structure mapping and change detection (Fig. 1).

2.1. Landsat analysis-ready data time-series

In this study, we used the entire archive of Landsat TM, ETM+, and
OLI/TIRS data collected from the year 1997 to 2017 within the Lower
Mekong region. The source Landsat Collection 1 (Tier 1) data are
available from the United States Geological Survey National Center for
Earth Resources Observation and Science (USGS EROS) archive
(https://earthexplorer.usgs.gov/). Overall, we processed 55,972 in-
dividual images from the archive. The Landsat ARD processing included
four steps: (1) conversion to radiometric quantity, (2) observation
quality assessment, (3) reflectance normalization, and (4) temporal
integration into 16-day composites.

At the first step, all data were converted to top-of-atmosphere re-
flectance (Chander et al., 2009) for six reflective bands (excluding
panchromatic band and OLI band 1) and brightness temperature for the
emissive band. Spectral reflectance (value range from zero to one) was
rescaled to the range from 1 to 40,000; temperature was recorded as
degrees C multiplied by 100 to preserve measurement precision.

During the second step, we determined per-pixel observation
quality, i.e. the probability of an image pixel to be collected during
clear sky conditions. The GLAD quality assessment model represents a
set of regionally adapted bagged decision trees (seven trees for each
model) to map probability of a pixel to represent cloud, cloud shadow,
heavy haze, and, for clear-sky observations, land or water. The decision
tree models were similar to the one developed for Landsat processing in
mapping global forest cover loss (Hansen et al., 2013), but were im-
proved for the Lower Mekong region by adding training data from
images where omission or commission errors were observed. The
Landsat Collection 1 data include observation quality layers based on
the globally consistent CFMask cloud and cloud shadow detection al-
gorithm (Foga et al., 2017). Since our primary goal was to reduce the
presence of clouds and shadows in the time-series data, we merged both
CFMask product (high-probability clouds and shadows) with the GLAD
algorithm output. This way, cloud, shadow, haze, water, and land
masks were created for each Landsat image.

The third step consisted of reflectance and brightness temperature
normalization to reduce the effects of atmospheric scattering and sur-
face anisotropy (Potapov et al., 2012). The purpose of relative nor-
malization is to facilitate the extrapolation of classification models in
space and time by ensuring spectral similarity within land cover types.
Relative normalization is not computationally expensive and does not

require synchronously collected or historical data on atmospheric
properties and land cover specific anisotropy, hence our preference of
relative normalization over process-based atmospheric correction
(Masek et al., 2006). The normalization target data were collected from
the MODIS 44C surface reflectance product (Carroll et al., 2010). We
used MODIS bands with a similar wavelength to the Landsat bands. To
ensure spatial consistency of the reflectance target dataset, we used
only near-nadir clear-sky and low aerosol observations collected for all
16-day MODIS composites from the year 2000 to 2011. We calculated
the normalization target composite value as the mean reflectance of all
observations having normalized difference vegetation index (NDVI)
values above the 75% percentile. The Landsat image normalization
consisted of three steps: (1) selection of pseudo-invariant target pixels
to derive the normalization model; (2) model parametrization; and (3)
model application for the entire image area. We defined the pseudo-
invariant target pixels as clear-sky land observations that represent the
same land cover type and phenology stage in the target Landsat image
and MODIS normalization composite. To check for land cover type and
condition, we calculated the absolute difference between Landsat and
MODIS spectral reflectance for red and shortwave infrared bands and
selected pixels with differences below 0.1 reflectance value for both
spectral bands. Next, we calculated the median bias between MODIS
and Landsat reflectance of pseudo-invariant pixels for each reflective
band for each 10 km interval of distance from the Landsat ground track.
The set of median values was used to parameterize a per-band linear
regression model that predicts the reflectance bias as a function of
distance from the ground track (similarly to the approach described in
Potapov et al., 2012). The model was then applied to all pixels within
the image to estimate the bias and subtract it from the Landsat top-of-
atmosphere reflectance for each spectral band. To normalize the
brightness temperature band, we used a mean bias value calculated
from all pseudo-invariant target pixels.

The final step of Landsat time-series processing was temporal ag-
gregation of individual images into 16-day composites. The compo-
siting interval and the range of dates for each composite were selected
corresponding to the Landsat orbital cycle and the MODIS Level 3 data
products (Huete et al., 1999). Temporal compositing was done per-pixel
using all overlapping observations within the 16-day interval. From all
available observations, we retained the one with the highest observa-
tion quality as the composite value. Each 16-day composite contains
normalized surface reflectance value for six spectral bands, normalized
brightness temperature value, and the quality assessment code that
attributes clear-sky and cloud/shadow contaminated observations. The
16-day interval composites are stored in geographic coordinates with a
pixel size of 0.00025 degree.

The 16-day annual clear-sky data availability (Fig. 2, A) reflects the
number of processed images per year. Data availability was low for the
years 2001 and 2002, when a large fraction of Landsat 5 images were
discarded due to sensor malfunction, and 2012 when only the Landsat 7
satellite was operational. The Lower Mekong region is located in a
seasonal monsoon climate, and clear-sky data availability reflects sea-
sonal cloud cover within the region (Fig. 2, B). The data distribution
plots reveal the inconsistency of annual clear-sky data availability and
suggest that a multi-temporal data aggregation and transformation is
required to create spatially and temporally consistent inputs for annual
mapping models.

2.2. Multi-temporal metrics

Multi-temporal metrics are a standard method of time-series data
transformation. They were widely used for forest extent and structure
monitoring at continental and global scales (DeFries et al., 1995;
Hansen et al., 2013, 2016). We implemented the metrics approach to
create consistent inputs for our annual vegetation mapping and change
detection models and to overcome the inconsistency of clear-sky data
availability that is typical for a humid climate. Two independent sets of
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metrics were created from 16-day time-series data: annual phenological
metrics and annual change detection metrics.

The annual phenological metrics were used as a source data for
vegetation structure mapping. This metric set was derived from the 16-
day reflectance data of the current year, while the data from the three
previous years were used to fill gaps longer than two month in the
observation time-series. Only observations with the best quality (lowest
atmospheric contamination) were selected to calculate metric values. In
addition to spectral reflectance and brightness temperature, we com-
puted a spectral variability vegetation index (SVVI, Coulter et al., 2016)
and a set of normalized band ratios using the following pairs of re-
flective bands: red/near-infrared (NIR), shortwave infrared (SWIR
1.6 μm)/NIR, blue/green, blue/NIR, green/red, green/NIR, and SWIR
(1.6 μm)/SWIR (2.2 μm). A metric set represented a set of statistics
calculated from the annual distribution of spectral reflectance and
index values. First, all observations were ranked by each spectral band
reflectance or index value individually. From obtained ranks, we ex-
tracted the highest/lowest, second to the highest/lowest values, values
corresponding to the first, second, and third quartiles, and record them

as individual raster layers. In addition, we calculated averages for all
observations between selected ranks and amplitudes between the
highest and lowest values. Second, we distributed observation dates by
the value of (i) NDVI, (ii) SVVI, and (iii) brightness temperature. From
these distributions, we extracted observation dates corresponding to the
highest/lowest, the second to highest/lowest and the first, second, and
third quartiles of the ranked variable, recorded spectral reflectance of
these observations, and calculated averages and amplitudes for ob-
servations between selected ranks. Metrics were independently calcu-
lated for each analysis year, 2000–2017.

The annual change detection metrics were designed to highlight
inter-annual changes of spectral reflectance. We used all clear-sky 16-
day observations from the current year, and observations for the same
16-day intervals from the preceding three years as a historical baseline
for change detection. For each observation, in addition to normalized
reflectance, we calculated normalized ratios from the following pairs of
bands: red/NIR, SWIR (1.6 μm)/NIR, and SWIR (1.6 μm)/SWIR
(2.2 μm). Similarly to the phenological metrics algorithm, we ranked
spectral reflectance and indices values separately for the current and

Fig. 1. Regional woody vegetation structure and change mapping workflow.
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preceding years, and extracted selected ranks and averages. We also
ranked time-series observation dates by the corresponding NDVI and
brightness temperature values and recorded spectral band values for
selected ranks. To highlight changes in seasonal reflectance, we com-
puted differences in spectral reflectance and indices values between the
current and preceding year observations for the same 16-day interval,
and extracted selected ranks (highest, second highest, lowest, second
lowest) from the distribution of difference values.

In addition to multi-temporal spectral metrics, we used topography
metrics (elevation and slope) derived from the void-filled seamless
Shuttle Radar Topography Mission (SRTM) digital elevation data
(http://srtm.csi.cgiar.org). The topography metrics served as inputs for
both vegetation structure and change detection models.

2.3. Woody vegetation structure and change mapping

The objective of the presented method is to characterize time-series
of tree canopy structure, specifically, tree canopy cover (proportion of
land area covered by tree canopies) and tree height (the top height of
tree crowns). Trees were defined as woody vegetation of 5m or taller in
height. We did not discriminate between natural tree cover and tree
plantation and agroforestry, hence we used the term “woody vegeta-
tion”. The term “forest” is used hereafter as a synonym of “woody ve-
getation” and does not refer to a land use category.

The airborne lidar-based canopy height model (CHM) served as
calibration data for both tree canopy cover and tree canopy height re-
gional products. The calibration data, however, were not available for
the Lower Mekong region. To overcome this limitation, we modeled
regional calibration data using lidar-based tree canopy cover and height
models derived for other tropical forests. The source lidar data were
collected by the G-LiHT instrument (Cook et al., 2013) over the United
States and Mexico in 2013 and by ALTM 3100 lidar scanner over the
Democratic Republic of the Congo (DRC) in 2014–2015 (Xu et al.,
2017). The per-pixel CHM values were modeled from these observa-
tions at 1m (the United States and Mexico) and 2m (the DRC) re-
solution. The calibration data represent transects distributed to max-
imize the representation of different forest types. We aggregated the

high spatial resolution CHM maps into the 0.00025×0.00025 degree
Landsat dataset resolution. For each Landsat pixel located within the
lidar transect, we calculated canopy height (90% percentile height per
pixel) and tree canopy cover (percent of pixel area with canopy height
equal to or above 5m). Additional calibration data (pixels with zero
canopy cover and height) were manually collected over water (where
lidar does not record returns) and treeless areas (especially, wet
grasslands and irrigated croplands) that were found to have commission
errors during model testing. Bagged regression tree ensembles
(Breiman, 1996; Breiman et al., 1984) were used to relate the lidar-
based tree canopy cover and height data as dependent variables and
annual phenological metrics for the 2014–2016 years as independent
variables in Mexico and the DRC, independently.

The Mexico and the DRC tree canopy cover and height mapping
models were applied within the Lower Mekong region using the year
2016 metrics. We aggregated the outputs of Mexico and the DRC
models taking the maximum predicted value per pixel, and used a
random subset from the resulting dataset as a regional training data for
the year 2016. We manually collected additional training sites to im-
prove characterization of wetlands, including mangroves (Giri et al.,
2011). The final bagged regression tree ensembles (25 trees for each
model) were applied annually to the Lower Mekong region to produce
tree cover height and cover per-pixel estimates.

The annual tree cover loss detection model was calibrated using
manually collected training data. To create the training data set, we
performed supervised classification to detect tree cover loss within
2013–2016 interval. The year with the highest drop of the NDVI was
assigned as the year of change event within the change class mask
(Hansen et al., 2013). We collected a random subset of training data
from the 2013–2016 tree cover loss product and related it to the annual
change detection metrics in order to derive a model applicable to all
years. Mapping forest gain at the annual interval is challenging due to
the gradual nature of tree growth. To map gain, we used the time series
of vegetation structure metrics (e.g., tree cover and height increase) as
the measure of tree growth.

After the annual tree canopy cover, height, and loss maps were
completed, we implemented the stepwise integration of these products

Fig. 2. Landsat clear-sky data availability for 3000 sample pixels selected for validation exercise (Section 2.5). A. An average annual clear-sky data availability
(number of 16-day intervals with cloud- and shadow-free data). B. An average within-year clear-sky data availability for each 16-day interval.
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into a consistent time-series (Fig. 3). Our objectives were (i) to integrate
tree cover loss data into annual woody vegetation structure time-series;
(ii) to reduce high-frequency inter-annual noise in vegetation structure
model outputs; and (iii) to improve the agreement between tree cover
and height model outputs. For a year when a forest loss event was
detected, the canopy cover and height was set to zero. Spikes in tree
canopy cover and height were removed using a 3-year median. In case
of high-frequency noise (the tree canopy cover or height oscillates be-
tween years), we replaced model outputs with values estimated using
linear regression.

2.4. Primary forest mapping

To assess natural forest loss, we mapped long-lived natural forest
extent, hereafter referred as “primary forests”, for the year 2000. The
primary forest definition and mapping was based on the approach de-
veloped by Turubanova et al. (2018) for humid tropical forests and
modified to include dry and seasonal forest types. Only areas with tree
canopy cover of 25% and higher in the year 2000 were considered. In
order to detect effects of pre-2000 disturbance, we used Landsat TM
data from the period of 1988 to 1999. We manually collected training
data for the primary forest class to calibrate a classification model that
employed year 2000 phenological metrics and 1988–2000 reflectance
trend metrics (slope and standard deviation of reflectance values re-
lated to the observation date). The output map was manually edited to
remove mature tree plantations established before 1988 and older
secondary forests, both identified by shape and pattern features.

2.5. Sample-based validation

The objectives for sample analysis were (i) to validate the year 2016
tree canopy cover and 2001–2017 tree cover loss maps, and (ii) to
identify populations of stable and dynamic tree cover pixels for the
temporal consistency analysis of the annual tree cover maps. A random
sample of 3000 Landsat pixels was selected within the Lower Mekong
region. The reference interpretation for each sample pixel was per-
formed by an image analyst using the following source data: annual
Landsat clear-sky mean surface reflectance image composites, temporal
profiles of 16-day NDVI, NIR/SWIR normalized ratio, and SWIR
(1.6 μm) normalized surface reflectance, and available high-resolution
time-series data on Google Earth. The availability of at least one high-
resolution image in Google Earth was critical for land cover type and
tree cover interpretation and sample pixels not covered with such data
were excluded. While most of the samples had high-resolution images

for the year 2016, a small proportion (2.3%) of samples were inter-
preted using images from other years, ranging from 2013 to 2017. The
total number of sample pixels for which reference data were collected
was 2964 (missing data accounted for 1.2% of all sample pixels).

For each sample pixel, we recorded information about land cover
and land use type, tree cover, and tree cover change. Land cover and
tree canopy cover were interpreted using the latest (before the end of
the year 2017) available high-resolution image on Google Earth. Land
cover classes distinguished in the process of visual sample interpreta-
tion included: woody vegetation (separated into natural mature forests,
young secondary forests, fallows, and tree plantations), shrublands,
treeless wetlands, agriculture areas, open water, bare rocks, developed
areas (that include rural settlements, urban areas, and infrastructure
objects), and recently cleared areas. Tree canopy cover within each
sample pixel was calculated as a proportion of nine regularly spaced
sample points that intersect tree crowns within a 30x30m Landsat pixel.
Tree cover change events were interpreted primarily using Landsat
time-series data, with the help of available high-resolution images. We
identified instances of tree cover loss, gain, and rotation (which in-
cludes loss events followed by tree cover gain, as well as tree cover
establishment and subsequent clearing). Partial change events that af-
fected only a fraction of a sample pixel were recorded as a separate set
of classes (partial loss, gain, and rotation).

2.6. Inter-comparison with GLAS-derived vegetation height map

The absence of publicly available airborne lidar data for the Lower
Mekong region precluded direct validation of the tree canopy height
maps. The data collected by GLAS instrument onboard the NASA Ice,
Cloud, and land Elevation Satellite (ICESat) between 2003 and 2009
offered an alternative source of reference data. However, the GLAS data
are affected by the atmosphere and topography, and even after filtering,
the data have multiple errors in canopy height estimation (Hansen
et al., 2016). Alternatively, we decided to use the global GLAS-cali-
brated tree canopy cover map of a 1-km resolution produced for the
year 2005 (Simard et al., 2011) that we resampled to the 30-m re-
solution. To perform inter-comparison, we selected a random sample of
10,000 Landsat pixels from the year 2005 tree height map. From this
sample, we excluded pixels that (i) had any water fraction, (ii) ex-
perienced tree cover change, or (iii) pixels for which, due to differences
in product resolution, one of the maps showed zero tree height while
the other estimated it above 5m. The remaining 3411 sample pixels
were used for inter-comparison.

Fig. 3. Examples of annual tree canopy cover and height per-pixel estimates before and after integration with change detection time-series. Tree canopy cover (TCC)
shown in percent and tree canopy height (TCH) in meters on the same scale. Years when tree cover loss was detected are underlined. A - Shifting cultivation land use.
Bolikhamsai province, Laos. B - Primary lowland forest cleared for agriculture. Kampong Speu province, Cambodia. C - Primary forest. Ratchaburi province,
Thailand. D - Rubber plantation established on a former agricultural land and cleared in the year 2017. Binh Duong province, Vietnam.
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3. Results

3.1. Accuracy and consistency of the annual woody vegetation structure
and change maps

The primary objective of our methodology is to generate spatially
and temporally consistent woody vegetation structure products that can
serve as a foundation for regional and national forest monitoring.
Therefore, it is critically important to evaluate the quality and con-
sistency of these products to demonstrate their suitability for the task.
Direct accuracy assessment for long (18 years) vegetation structure
time-series is not feasible in the region due to the absence of quality
reference data. However, the temporal consistency of annual maps can
be evaluated using sample-based data. In the following section, we
present the accuracy and consistency of the vegetation structure time-
series quantified using best available reference data for each product
component.

3.1.1. Annual tree canopy cover
The reference data quantify tree canopy cover for the year of the

latest high-resolution image available from Google Earth (n=2964).
We compared the reference data to map data for the same year within
major land cover types (Fig. 4). The comparison showed that the map
data consistently underestimated tree canopy cover for all land cover
types except treeless areas. The observed underestimation is primarily
related to the differences in canopy cover measurement. While the
mapping model was calibrated with lidar data that is sensitive to
within-canopy gaps, the reference data were interpreted using visual
observations of canopy extent, or crown cover, and small gaps within
and often between tree canopies are not discernable. Tree cover within
settlements and agriculture areas was consistently underestimated due
to high landscape heterogeneity, while treeless land covers were
mapped well. Despite these underestimations, the map proved suffi-
cient in discriminating forested and non-forested areas.

To quantify tree canopy cover map accuracy, we converted both
reference and mapped tree canopy cover data into “forest” and “non-
forest” classes. For the reference data, we used the 10% tree canopy
cover threshold to define forest class, and for the map data, we defined
forest as sample pixels with tree canopy cover of 10% or higher and tree
height of at least 5 m. The accuracy statistics shows the overall accuracy
of 0.86 (SE 0.006), the forest class user's accuracy of 0.98 (SE 0.004)
and the producer's accuracy of 0.81 (SE 0.009). Omission (false

negatives) and commission (false positives) errors were largely attrib-
uted to sample pixels within heterogeneous agriculture and agrofor-
estry landscapes and within shrub/savanna ecotones. Tree cover within
predominantly treeless agriculture landscapes usually exists in small
clusters, the area of which is smaller or similar to the Landsat pixel size.
Such clusters may not be reliably detected in Landsat-scale mapping, as
was demonstrated by our earlier research in Bangladesh (Potapov et al.,
2017).

3.1.2. Tree cover loss detection
The accuracy of the tree cover loss detection was quantified using

the same sample of 2964 Landsat pixels. Overall, 493 sample pixels that
were identified during reference image interpretation as loss or rotation
experienced a complete clearing of tree cover during the 2001–2017
interval. We labeled those pixels as positive tree cover loss detection
and the rest of the pixels (including those with partial loss) as stable.
The overall accuracy of the tree cover loss detection model was 0.93 (SE
0.005), with the loss class user's accuracy of 0.84 (SE 0.02) and pro-
ducer's accuracy of 0.75 (SE 0.02).

3.1.3. Tree cover dynamics
For a user of the vegetation structure time-series products, the inter-

annual changes in tree canopy cover serve as an indicator of forest
dynamics. Using the reference tree cover dynamics types, we can de-
monstrate the consistency of time-series data and its suitability for tree
cover change quantification. Sample pixels where tree cover change
was observed (n=567) demonstrate high amplitude of tree canopy
cover for the 2000–2017 interval, with the median amplitude above
50% cover (Fig. 5, A). When loss and gain events were considered se-
parately, the amplitude of tree cover loss and gain was consistent for
unidirectional changes (Fig. 5, B and C). Sample pixels that were in-
terpreted as tree cover loss (n=130) exhibited high tree cover reduc-
tion (median tree cover loss of 54%) and low tree cover gain (median
gain 16%). Tree cover gain sample pixels (n=74) had a median tree
cover loss of 5% and gain of 64%. Sample pixels interpreted as tree
cover rotation (n=363) exhibited both high tree cover loss (median
80%) and gain (median 70%). Sample pixels with partial change (where
change event affected a portion of the pixel, n=160) had higher tree
cover amplitude compared to stable sample pixels. Sample pixels where
reference data showed no tree cover change (n=2223) had a low
amplitude of tree cover (mean tree cover amplitude of 7.6% with the
standard deviation of 12.2%). While sample pixels representing stable

Fig. 4. Tree canopy cover for the year when a high-resolution image was available as a reference. A – mapped tree canopy cover, B – interpreted tree canopy cover.
Land cover categories: FOR – forests; FAL – fallows, part of the shifting cultivation land use; PLA – tree plantations (including palms); TOF – land cover and land use
categories with trees outside forests, including settlements, natural pastures, and savannas; NONF – treeless land cover and land use, including agriculture areas,
water, rocks, and wetlands. The NONF class also includes all fresh clearing areas within plantation and shifting cultivation land uses that have no tree cover in both
reference and map data.
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land cover were clearly separable from loss and gain events, remaining
inter-annual variation of mapped canopy cover values may result in
change detection commission errors. Considering measured tree cover
amplitude in “stable” sample pixels, we suggest to ignore pixels with
less than 20% tree cover change when mapping high confidence forest
loss or gain areas.

3.1.4. Tree canopy height
An inter-comparison of our tree canopy height map for the year

2005 with the global GLAS-derived vegetation canopy height (Simard
et al., 2011) for sample pixels with stable land cover demonstrated
strong agreement between these products. The mean average error
(MAE) is 3.7m, the correlation coefficient is 0.92 and the R2 of linear
regression of Simard et al. (2011) estimates vs. our estimates is 0.85.
The mean error (ME) is 2.4m and demonstrates some underestimation
of our tree height map compared to the GLAS-based product (Fig. 6).

3.2. Forest dynamics in the Lower Mekong region

To illustrate trends in regional and national tree cover, we defined
“forest” using the minimum inclusion threshold of 10% tree canopy
cover and 5m tree height. All area estimates hereafter are based on the
map data unless specified otherwise. Of the total forest class area of the

year 2000 (119.6 million hectares, Mha), 9.4% was cleared by the year
2017, and 16.6% was affected by stand-replacement disturbance from
the year 2001 to 2017. The area of the forest class in 2017 was 112.2
Mha. Of this area, 45.5% consist of stable primary forests, 17.2% ex-
perienced stand-level disturbance from the year 2001 to 2017, 3.8% of
the year 2017 forests were established within the year 2000 non-forest
area. The remaining 33.5% represented by secondary forests and
plantations did not experience stand-level disturbance during the study
period. The sample-based estimate of forest area (defined using the 10%
canopy cover threshold) for the circa year 2016 was 133.5 Mha (95%
confidence interval of +/− 3.4 Mha).

By 2017, the region lost 11.1% of its year 2000 primary forest area.
The rates of primary forest reduction were different among the coun-
tries. While Thailand lost only 4.2% of its primary forests, Cambodia
lost almost 29%.

The regional forest dynamics analysis was performed for the years
2001–2015, allowing us to observe a two-year trend of forest recovery
after disturbance event (Fig. 7). A “forest loss” label was assigned only
to those areas that were classified as forests in 2000 and, after forest
clearing between 2001 and 2015, did not restore tree cover by the year
2017. The new forest areas that were established after the year 2000
and did not experience disturbance events from 2001 to 2015 we
considered “forest gain”. All other areas that experienced stand-level
disturbance were considered “forest rotation”. Our analysis for the year
2015 shows that 32.1% of the maximum forest class area (all areas that
were classified as forest for at least part of the 2000–2015 interval)
experienced clearing and/or regeneration events. Only 27.1% of the
Lower Mekong region total land area was covered by primary forests
that did not experience changes during 2000–2015 interval. Among the
countries, the largest share of dynamic forests was found in Cambodia
and Vietnam, 39.3% and 38.5% of the maximum forest class area, re-
spectively. Forest dynamics were dominated by tree cover rotation in
all countries except Cambodia, where deforestation was the dominant
forest dynamics trajectory.

The average annual area of forest clearing within the region is 2.34
Mha. The annual disturbance area increased from 2001 (1.85 Mha) to
2017 (2.48 Mha) by 34% (Fig. 8). A “spike” of forest clearing in 2013
corresponds to extensive deforestation in Cambodia.

Inconsistent national forest definitions and land use management
categories impede the comparison between our biophysically-derived
forest area and the official country forest area reports. We compared
our forest area estimates with the national forest area submitted by the
countries to the most recent FAO FRA report (FAO, 2016). The FAO
data are provided for the years 2000, 2005, 2010, and 2015. For the
purpose of this inter-comparison, we have aggregated reported “forest”

Fig. 5. Tree canopy cover amplitude as indication of forest dynamics. Inter-annual statistics include tree canopy cover amplitude (A), maximal tree canopy cover loss
(B) and gain (C) within the time-series. The tree cover dynamics was attributed by experts using time-series of Landsat data and high resolution images available in
Google Earth. The unidirectional changes were attributed as “Net gain” and “Net loss”; sample pixels that experienced both loss and gain events were included into
the “Rotation” type; any type of partial change event was attributed as “Partial change”; and all other sample pixels were assigned to the “Stable” type.

Fig. 6. GLAS-modeled (Simard et al., 2011) vs. Landsat-derived (this research)
estimates of the year 2005 tree canopy height for selected sample pixels
(n=3411). The gray level represents sample density.
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and “other wooded land” area for each country. Our annual vegetation
structure maps were converted into the “forest” class using 10% and
30% canopy cover and 5m tree height thresholds. Both FAO data and
our time-series maps indicate the decrease of forest area within the
region (Fig. 9). We estimated that the year 2000 forest area decreased
by 6.2% using a tree canopy cover threshold of 10% and by 3.9% for a
30% threshold. The difference may be explained by the dis-
proportionally high deforestation within dry deciduous open-canopy
forests in Cambodia and Vietnam. Of all countries, only in Cambodia do
our Landsat-based results and the national FRA report show similar
forest areas and inter-annual trend. In Laos and Myanmar, our estimates
are similar to the official reports at the beginning of the interval (in
Laos, 2% difference in 2000) or the end of the interval (in Myanmar, 2%
difference in 2015). However, for the rest of the interval, our estimates
diverge from the national reported forest area. In Laos, the Landsat-
based forest area depicted a 7.5% net loss by the year 2017, while the
FRA reports a 6% gain in forest area by the year 2015. In Thailand and
Vietnam, the Landsat-based forest area estimates are much higher
compared to official reports (by 43% and 31%, respectively), which
may be explained by the fact that these countries employ a land-use
based forest definition that excludes orchards, non-timber plantations,
and agroforestry. The Landsat-based forest area in Vietnam declined by
6% by the year 2017, while the FRA-reported forest area increased.

Forest disturbance dynamics were used to estimate the age of forest
stands within the region (Fig. 10). We define forest age as the number of
years since a particular area reached a set of forest class thresholds (tree
canopy cover of 10% or higher and tree height of 5m or taller). Overall,

21% of the year 2017 forests had an age of 17 years or less. Vietnam
and Laos exhibit the highest share of forests younger than 18 years,
26.5% and 24.2% of the year 2017 forest extent, respectively. Young
forests mostly consist of fallows and tree plantations. Fallow age is one
of the most important variables required for carbon balance modeling
within shifting cultivation landscapes (DOF, 2018). Our forest dynamics
products provide key variables for national and regional carbon balance
modeling.

4. Discussion

4.1. Advantages and applications of vegetation structure time-series

The use of high spatial resolution satellite data, such as Landsat, for
national and regional analysis of ecosystem functions and dynamics is
growing. However, the image mass-processing, long time-series ana-
lysis, and large-area consistent data characterization are still challen-
ging for most data users. Off-the-shelf, spatially and temporally con-
sistent products that represent basic characteristics of land cover and
change would allow users to implement satellite-based data for national
and regional reporting and modeling without the need to apply all data
processing steps (SERVIR-Mekong, 2015).

The best example of the hierarchical data processing chain and
high-level product suite was demonstrated by the MODIS science team.
The science team established a systematic data processing structure
adopted by NASA for other earth observations datasets (Justice et al.,
2002). We build our Landsat processing algorithm following the MODIS
data processing principles. The source Level 1 data (geometrically
corrected and radiometrically calibrated) is stepwise processed to Level
2 (normalized surface reflectance), and Level 3 (temporally aggregated
16-day observation time-series). Level 3 ARD is used as input data to
generate annual multi-temporal metrics that represent land surface
phenology and inter-annual changes of spectral reflectance. Our map-
ping models are based on these inputs, and model outputs (tree canopy
cover, tree height, and tree cover loss) are integrated into a spatially
and temporally consistent Level 4 product suite appropriate for national
land cover and change monitoring applications.

While the consistency and accuracy of vegetation structure time-
series are validated in the current study, users should be aware of errors
inevitably present in wall-to-wall maps. For national reporting, the land

Fig. 7. Forest dynamics within the Lower Mekong region, 2000–2015. A – The dominant forest dynamics type for each 3×3 km grid cell. B – Proportion of forest
dynamics types from the total land area.

Fig. 8. Annual gross forest loss, million hectares (Mha).
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cover and land cover change area should be estimated from reference
sample data, preferably collected using higher spatial resolution inputs
(IPCC, 2006; Olofsson et al., 2014; Potapov et al., 2014, 2017). The
wall-to-wall vegetation structure time-series serves as an important
component for sample-based analyses, specifically for stratification
which improves sampling efficiency (Stehman, 2014; Tyukavina et al.,
2013), and as an auxiliary variable for regression estimator procedures,
improving the precision of the area estimate (Pickering et al., 2019).

4.2. The value of land surface phenology data for vegetation structure
mapping

The tree canopy cover and height models were both derived using
the same set of annual Landsat spectral reflectance phenological me-
trics. The most important variables that were used by these models are
similar. Both models primarily employ annual reflectance averages and
amplitudes that characterized per-pixel land surface phenology. From
the five most important metrics for the tree canopy cover model, two
are based on NDVI (annual average and average between the minimum
and median values within the year). The other three are annual average

red reflectance, interquartile average green reflectance, and the average
value of the normalized ratio of blue and red reflectance between the
median and the maximum annual values. For the tree canopy height
model, the most important metrics include annual averages of NDVI
and SWIR (1.6 μm) reflectance and the averages between the minimum
and maximum, first and second quartiles and minimum and median
values of green reflectance. Elevation and slope did not feature sig-
nificantly in the models, together contributing 1.9% and 1.2% of total
deviance reduction for the canopy height and cover models, respec-
tively. These results suggest that static variables, like topography, may
be less important for the models that predict annual vegetation struc-
ture in a highly dynamic landscape. Previously, Matasci et al. (2018)
showed that elevation and latitude are the most important metrics to
explain vegetation structure. We suppose that while such models may
have high prediction power in static landscapes or for a single year,
they may fail to correctly predict changes in vegetation structure be-
tween years. For models that predict vegetation structure in dynamic
landscapes, spectral metrics that are collected from annual observation
time-series of vegetation phenology have the highest predictive power.

The annual NDVI phenological metrics have the highest importance

Fig. 9. Annual forest class area from the current study, defined using tree canopy height threshold of 5m or taller and tree canopy cover threshold of 10% and 30%,
and the national forest and other wooded land area for the years 2000, 2005, 2010, and 2015 reported to the FAO FRA (FAO, 2016).
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in both canopy cover and height models, contributing 74% and 75% to
the total deviance reduction, respectively. Thus, we may expect that
forest seasonality will greatly affect predicted structure parameters, as
shown by Hansen et al. (2016). The year 2016 tree canopy cover for the
sample pixels interpreted as natural forests (n=1320) showed high
variability between forest types, defined using FAO climatic ecozones
(FAO, 2001) (Fig. 11). While evergreen humid tropical and mountain
forests exhibit high median canopy cover (above 90%) and low varia-
bility, the tree cover in moist and dry deciduous forests is lower and the
variability of tree cover is higher. The reference data, collected using
high-resolution images from Google Earth, reflected closed-canopy
conditions for all forest types except dry forests which consist of open-
canopy forests and savannas. As shown by Hansen et al. (2002a,

2002b), high spatial resolution satellite data do not enable the dis-
crimination of small within-canopy and between-canopy gaps and
surrounding tree canopies in dense forests. In our validation exercise,
such areas were counted as closed canopy cover, which may inflate
reference tree cover estimation.

The variation of clear-sky data availability is reflected in a subtle
fluctuation of annual tree canopy cover and height predictions. When
considering only stable, closed-canopy primary forests, we notice a
year-to-year fluctuation of vegetation structure parameters, ranging
+/− 2% for tree canopy cover and +/− 0.5% for tree canopy height
around the 2000–2017 average (Fig. 12, A). We observe that these
fluctuations are caused by dramatic changes in annual clear-sky data
availability, ranging to +/− 40% of the 2000–2017 average (Fig. 12,
B). The lowest data availabilities were observed in 2001–2002 and
2012, resulting in a drop of annual average NDVI and anomalous ve-
getation structure estimation.

Extreme weather events that resulted in changes of annual vegeta-
tion phenology (droughts, floods) may affect annual vegetation struc-
ture prediction. Our data indicated a decrease of tree canopy cover and
height within stable primary forests in the year 2016 (Fig. 12, A). The
observed changes in the average tree cover and height were not dis-
tributed equally within primary forests but concentrated in the high
mountain forests within the Annamite Range in Laos and Vietnam
(Fig. 13, A-C). These forest areas were affected by a drought in
2015–2016 attributed to a strong El Niño event (Thirumalai et al.,
2017). The drought, evident in Lower Mekong annual precipitation data
(Fig. 13, D), affected high altitude forests with clear evidence of an
average annual NDVI decrease (Fig. 13, E). The effect of the drought on
tree mortality and forest structure is unknown and can only be con-
firmed via field research, which may be not possible in these remote
areas. We observed a rapid recovery of NDVI in 2017. Thus, we may
presume that the drought caused temporary defoliation, but did not
dramatically alter forest structure.

4.3. The value of annual tree cover change detection data

In boreal and temperate regions, it takes a forest stand several years
to reach 5-m height after stand-level disturbance. In such an environ-
ment, mapping annual tree cover (Huang et al., 2010; Matasci et al.,
2018) is sufficient to capture forest dynamics. In tropical ecosystems,
the tree cover and height recovery is much faster, especially within tree
plantations. Given the high frequency of disturbance and forest re-
covery, mapping change areas from annual tree cover and height time-
series is challenging. A forest disturbance event that occurs within a
year affects only a portion of the annual reflectance time-series. In this

Fig. 10. The age of forest stands in the year 2017. A – Forest age map subset in
Luang Namatha province of Laos. B – Percent total year 2017 forest area by age
class (forests older than 17 years are not shown).

Fig. 11. Tree canopy cover for sample pixels interpreted as “natural forests”. A – mapped tree canopy cover, B – interpreted tree canopy cover. Sample pixels are
attributed by the FAO ecozones into humid forests (HUM), mountain forests (MON), moist deciduous forests (MOI), and dry forests (DRY).
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case, phenology-based reflectance metrics that are created using both
pre- and post-disturbance observations may not provide sufficient in-
formation to map the effect of the change event to tree cover. Moreover,
the timing of the event within the year and the availability of clear-sky
observations before and after the disturbance event will affect change
detection sensitivity. In the year following a disturbance event, rapid
tree cover regeneration (especially, in case of forest plantations or
shifting cultivation) can mask the signal of antecedent disturbance.
Unlike annual tree canopy and height models, the annual change de-
tection model is calibrated to detect abrupt losses of tree cover without
respect to time of year. The change detection model in the current study
was calibrated using training data that represented complete or near-
complete canopy removal. Thus, we may use the model outputs as an
indicator of a stand-level disturbance in a certain year. While our goal is
to provide data users a tool to estimate forest area annually, we decided
to assign tree cover and height values to zero for the years where such

stand-replacement disturbance were detected. The resulting
dataset allows users to estimate net forest area change between any pair
of years by direct inter-comparison of the annual tree cover and height
maps.

4.4. Challenges of continuous vegetation structure monitoring

Temporal and spatial consistency allows data users to implement
the presented data for (i) annual land cover and change mapping; (ii)
national or regional stratification to support sample-based analysis; (iii)
map calibration using regional lidar data, as available. A data user,
however, should take into account the product limitations.

Some of the shortcomings of the calibration models were apparent
during the mapping exercise. Since the model was calibrated with out-
of-the-region training data, we may expect a bias in estimated tree
cover and height. Our method assumes similarity of spectral response to

Fig. 12. A – Annual average tree canopy cover and tree canopy height within stable primary forests; percent difference from the 2000–2017 average. B – Number of
clear-sky observations and average annual NDVI for all 3000 sample pixels used for the sample analysis; percent difference from the 2000–2017 average.

Fig. 13. Evidence of drought effect on the vegetation spectral reflectance. A-C Sample area in the Annamite Range on the border between Laos and Vietnam. A, B –
Landsat image composites, 2015 and 2016; C – Primary forests extent (1) and primary forest areas where reduction of tree canopy cover by 5% or higher was
observed in 2016/2017 compared to 2015 (2). D – Annual precipitation within Lower Mekong, percent of 2000–2017 average (data from Funk et al., 2015). E – NDVI
for all 2000–2017 16-day clear-sky composites for a pixel marked with a start on the map C.
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tree canopy structure between tropical forests. We suppose that if ve-
getation structure models were calibrated using within-region CHM
data, the output maps may have had different values of canopy cover
and height. The regional product that we derived using out-of-region
calibration data should be considered a prototype. Regional lidar data,
when it becomes available, may be used to re-calibrate the model fol-
lowing the presented approach.

Another source of model uncertainty is related to the aggregation of
calibration high spatial resolution CHM data into Landsat 30m spatial
resolution. Calibration data for the tree cover model was derived as a
proportion of a pixel covered with vegetation above 5m height. The
approach is similar to Matasci et al. (2018) who used a 2m height
threshold to map tree cover. As tree cover is defined using a strict
threshold, the absolute error of the CHM model is critically important.
The reported uncertainty of G-LiHT-derived digital terrain models is
close to 3m and even higher on slopes (Neigh et al., 2014). Thus, we
may expect relatively high uncertainty of tree cover estimation for
areas with average tree height at or near 5m. We observed that the
Landsat-scale canopy cover estimated from the CHM aggregation
within dry and degraded forests of the Yucatan peninsula was low, even
when high-resolution optical images (available on Google Earth) show
dense canopy cover. The underestimation of canopy cover for the
young, dry, or degraded forests with canopy heights close to 5m may
cause possible underestimation of canopy cover in young fallows within
the Lower Mekong region.

Calibration of the tree cover height model is even more challenging.
A number of variables can be extracted from the distribution of first
return heights or CHM values within a Landsat pixel, including mean,
median, maximum, etc. Some authors derived a set of models to predict
different variables (Matasci et al., 2018). Our goal was to derive an
annual time-series data that may be used at the national scale to map
forests using specific structural definitions. We considered that a mean
canopy height value would not be ideal for calibration as it mixes
forested and non-forest areas. The maximum value would, in turn, lead
to overestimation of forest area by highlighting pixels with just a few
trees as forested. We decided to use 90% tree cover height value as a
basis for model calibration. Overall, we conclude that there is no es-
tablished single best method to derive canopy height calibration data at
a 30m resolution from the fine-resolution lidar data, and model cali-
bration methods should be selected based on the expected application
of the output map product.

5. Conclusion

We have presented an approach for annual Landsat-based woody
vegetation structure monitoring for the Lower Mekong region
(Cambodia, Laos, Myanmar, Thailand, and Vietnam) and prototyped it
for the 2000–2017 time interval. The product was validated using re-
gional-scale probability sampling which confirmed its suitability for
national land cover monitoring applications. Our results confirm the
importance of the long-term satellite data archive and phenological
metrics for vegetation structure characterization and the value of tree
cover loss detection for construction of consistent tree cover change
time-series. The project results are available for download (https://
glad.umd.edu/) and serve as an input to the Lower Mekong Regional
Land Cover Monitoring System (https://rlcms-servir.adpc.net/en/
forest-monitor/).

The primary obstacle in implementing the presented method to
other regions of the world is the limited availability of lidar data. Here,
we developed a model using lidar calibration data from outside of the
region of study. Moving forward, vegetation structure data for the
tropics and temperate biomes will be systematically collected by the
Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar in-
strument (Qi et al., 2019). Improved multi-spectral data in terms of
temporal and spatial resolution through the integration of Landsat and
Sentinel-2 imagery is currently in development (Claverie et al., 2018).

Both the globally consistent lidar data for calibration and improved
time-series optical data for estimation will enhance the mapping and
monitoring capabilities presented here, with a global application fea-
sible in the near term.
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